Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575732

RESUMO

BACKGROUND: DNA double-strand break (DSB) induction and repair are important events for determining cell survival and the outcome of cancer radiotherapy. The DNA-dependent protein kinase (DNA-PK) complex functions at the apex of DSBs repair, and its assembly and activity are strictly regulated by post-translation modifications (PTMs)-associated interactions. However, the PTMs of the catalytic subunit DNA-PKcs and how they affect DNA-PKcs's functions are not fully understood. METHODS: Mass spectrometry analyses were performed to identify the crotonylation sites of DNA-PKcs in response to γ-ray irradiation. Co-immunoprecipitation (Co-IP), western blotting, in vitro crotonylation assays, laser microirradiation assays, in vitro DNA binding assays, in vitro DNA-PK assembly assays and IF assays were employed to confirm the crotonylation, identify the crotonylase and decrotonylase, and elucidate how crotonylation regulates the activity and function of DNA-PKcs. Subcutaneous xenografts of human HeLa GCN5 WT or HeLa GCN5 siRNA cells in BALB/c nude mice were generated and utilized to assess tumor proliferation in vivo after radiotherapy. RESULTS: Here, we reveal that K525 is an important site of DNA-PKcs for crotonylation, and whose level is sharply increased by irradiation. The histone acetyltransferase GCN5 functions as the crotonylase for K525-Kcr, while HDAC3 serves as its dedicated decrotonylase. K525 crotonylation enhances DNA binding activity of DNA-PKcs, and facilitates assembly of the DNA-PK complex. Furthermore, GCN5-mediated K525 crotonylation is indispensable for DNA-PKcs autophosphorylation and the repair of double-strand breaks in the NHEJ pathway. GCN5 suppression significantly sensitizes xenograft tumors of mice to radiotherapy. CONCLUSIONS: Our study defines K525 crotonylation of DNA-PKcs is important for the DNA-PK complex assembly and DSBs repair activity via NHEJ pathway. Targeting GCN5-mediated K525 Kcr of DNA-PKcs may be a promising therapeutic strategy for improving the outcome of cancer radiotherapy.

2.
Cell Death Dis ; 15(3): 209, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480704

RESUMO

Metabolic reprogramming, a hallmark of cancer, is closely associated with tumor development and progression. Changes in glycolysis play a crucial role in conferring radiation resistance to tumor cells. How radiation changes the glycolysis status of cancer cells is still unclear. Here we revealed the role of TAB182 in regulating glycolysis and lactate production in cellular response to ionizing radiation. Irradiation can significantly stimulate the production of TAB182 protein, and inhibiting TAB182 increases cellular radiosensitivity. Proteomic analysis indicated that TAB182 influences several vital biological processes, including multiple metabolic pathways. Knockdown of TAB182 results in decreased lactate production and increased pyruvate and ATP levels in cancer cells. Moreover, knocking down TAB182 reverses radiation-induced metabolic changes, such as radioresistant-related lactate production. TAB182 is necessary for activating LDHA transcription by affecting transcription factors SP1 and c-MYC; its knockdown attenuates the upregulation of LDHA by radiation, subsequently suppressing lactate production. Targeted suppression of TAB182 significantly enhances the sensitivity of murine xenograft tumors to radiotherapy. These findings advance our understanding of glycolytic metabolism regulation in response to ionizing radiation, which may offer significant implications for developing new strategies to overcome tumor radioresistance.


Assuntos
L-Lactato Desidrogenase , Proteômica , Humanos , Animais , Camundongos , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5/metabolismo , Linhagem Celular Tumoral , Glicólise , Lactatos , Tolerância a Radiação/genética
3.
Mol Biol Rep ; 50(4): 3073-3083, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36689051

RESUMO

BACKGROUND: TAB182 is overexpressed in cancerous tissues and correlated with poor overall survival in lung cancer patients. Mechanistically, TAB182 participates in DNA damage repair and endows tumour cells with radio- and chemoresistance. However, its role in non-small cell lung cancer (NSCLC) remains unclear. METHODS AND RESULTS: Cells with stable TAB182 knockdown (KD) were generated using A549 NSCLC cells, and we demonstrated that depleting TAB182 inhibits cell EMT, proliferation, colony formation, migration and invasion. Analysis of the TCGA database showed a positive correlation between TAB182 and EGFR, a well-established NSCLC oncoprotein. Then, we verified that silencing TAB182 decreases EGFR expression at both the mRNA and protein levels. Moreover, both TAB182 and EGFR were reported to restore ionizing radiation (IR)-triggered DNA damage. We validated that IR elevates the protein level of EGFR and that silencing TAB182 can alleviate IR-induced EGFR upregulation. Furthermore, overexpressing EGFR abrogates the inhibitory effects of TAB182 KD on EMT, migration, and invasion in A549 cells. CONCLUSIONS: Our data demonstrated that EGFR expression is regulated by TAB182 and downregulation of TAB182 has a novel function to repress EMT, migration and invasion by decreasing EGFR, indicating TAB182 could regulate the malignant progression of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Células A549 , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/metabolismo
4.
MedComm (2020) ; 3(2): e123, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35356800

RESUMO

The activation of DNA-dependent kinase (DNA-PKcs) upon DNA damage contains a cascade of reactions, covering acetylation by TIP60, binding with Ku70/80, and autophosphorylation. However, how cells regulate TIP60-mediated acetylation of DNA-PKcs and the following DNA-PKcs activation upon DNA damage remains obscure. This present study reported that TIP60 is hyper-SUMOylated in normal conditions, but upon irradiation-induced DNA damage, small ubiquitin-like modifier (SUMO)-specific protease 3 (SENP3)-mediated deSUMOylation of TIP60 promoted its interaction with DNA-PKcs to form the TIP60-DNA-PKcs complex. We show that TIP60 SUMOylation is reduced quickly in response to DNA damage and the deSUMOylation of TIP60 by SENP3 is required for DNA-PKcs acetylation and its autophosphorylation. Comet and γH2AX immunofluorescence assay showed that knockdown of SENP3 impaired DNA damage repair. Using the NHEJ report system, we found that knockdown of SENP3 affected the efficiency of NHEJ. Further exploration using clonogenic survival assay, cell viability assay and cytoflow assay suggested that leaking SENP3 increased the sensitivity of tumour cells to serval DNA damage treatment. Overall, our findings revealed a previously unidentified role of SENP3 in regulating DNA-PKcs activity and DNA damage repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...